支持单位: 全国警用装备标准化技术委员会 , 公安部安全与警用电子产品质量检测中心 , 公安部特种警用装备质量监督检验中心 , 国家安全防范报警系统产品质量监督检验中心
jiangbei
历届评选

华为:大数据技术引领视频监控发展

2013-09-10 09:09:47  来源 : CTI论坛


       中国国际警用装备网讯:得益于IT信息技术的快速进步,人类可以随时随地记录下产生的各类数据,而同时数据存储的成本也正以前所未有的速度下降,一个大数据的时代在悄然来临。根据IDC预测,全球在2010年正式进入ZB时代,全球数据量大约每两年翻一番,意味着人类在最近两年产生的数据量相当于之前产生的全部数据量。爆炸式增长的数据,正推动人类进入大数据的时代。


  维基百科全书的定义:“大数据是飞速增长的,用现有数据库管理工具难以管理的数据集合”。这些数据包括:社交媒体、移动设备、科学计算和城市中部署的各类传感器等等,其中视频又是构成数据体量最大的一部分。据IMS Research统计,2011年全球摄像头的出货量达到2646万台,预计到2015年摄像头出货量达5454万台。2011年一天产生的视频监控数据超过1500PB,而累计历史数据将更为庞大,在视频监控大联网、高清化推动下,视频监控业务步入数据洪水时代不可避免。


  视频监控数据有两个方面的内涵——海量和非结构化。视频监控数据量规模庞大,并且随着高清化、超高清化的趋势加强,视频监控数据规模将以更快的指数级别增长;与通常讲的结构化数据不同,视频监控业务产生的数据绝大多数以非结构化的数据为主,这给传统的数据管理和使用机制带来了极大的挑战。


  数据洪水给视频监控的困境


  以飞速增长的视频监控数据,使得传统视频监控体系架构、数据的管理方式、数据分析应用等面临新的困境。


  困境一,数据量的急剧扩大和IT投资之间的矛盾。按照IT产业的法则:在满足客户需求的前提之下,往往技术成本越低,其生命力往往越强。由于数据量的急速扩大,以及随之而来的大规模计算的需求越来越多,一味采用高配硬件,使得硬件投资成为客户不可承受之重,客户越来越希望在满足需求的前提下,用中低端的硬件来替换高配硬件。


  困境二,海量数据和有效数据之间的矛盾。摄像头7X24小时工作,如实记录镜头覆盖范围的发生的一切,仅仅记录信息是不够的,因为对于客户来讲可能大部分信息是无效,有效信息可能只分布在一个较短的时间段内,按照数学统计的说法,信息是呈现幂律分布的,也称之为信息的密度,往往越高密度的信息对客户价值越大。


  困境三,资源利用和效率之间的矛盾,串行计算和并行计算的矛盾。视频监控业务网络化、大联网后,网络内的设备越来越多,利用闲置的计算资源,实现资源的最大化利用,关乎运算的效率。在视频监控领域,往往视频分析的效率决定价值,更低的延迟、更准确的分析往往是平安城市这类客户的普遍需求。随着数据量的增加,哪怕对TB级别的数据进行对视频内容的数据分析和检索,采用串行计算的模式都可能需要花费数小时的计算,已远远不能胜任时效性的需求。视频的分析和检索,不能依赖于传统的手段,巨量数据的效率优化,并行计算是视频智能分析的唯一出路。


  大数据关键技术简介


  因为大数据带来了很多现实中的难题,为了解决这些难题我们需要新的技术变革,需要新一代的数据库技术,业界称之为大数据技术。IDC 在定义大数据技术:大数据技术将被设计用于在成本可承受(economically)的条件下,通过非常快速(velocity)的采集、发现和分析,从大量化(volumes)、多类别(variety)的数据中提取价值(value),将是IT 领域新一代的技术与架构的变革。Hadoop技术正是在此背景下诞生,历经数年的积累,Hadoop已成长为一个强大的生态系统,不但衍生出HDFS、HBase、Hive等多个子项目,成为IT领域广泛采用的大数据模型框架。


  大数据技术和视频监控业务在体系架构上的融合


  “除了上帝,任何人都必须用数据来说话”,美国著名管理学家、统计学家爱德华.戴明将数据提升到了和上帝平行的高度。视频监控业务正是一个典型的数据依赖型业务,依靠数据说话。可以说,大数据与视频监控业务有着天然的结合。综合来看,大数据与数据监控业务的结合主要体现在“存”、“看”、“用”上。


  “闪存”:如果类比水库蓄水的方式,典型的网络视频监控数据存储模型是一个由小溪汇聚河流、再汇聚到水库的蓄水方式。小溪数量增多、水量增大是水库蓄水量的保证,然而传统方式下蓄水量增大将提高水库建造成本和蓄水安全的要求。而采用分布式蓄水模式,在河流中游建立多个中间蓄水池,不仅可以减少主水库蓄水压力和成本,化整为零也提高了就近用水效率。在大数据技术支撑下,网络视频监控数据存储模型可转向分布式的数据存储体系,提供高效、安全、廉价的存储方式。


  “易看”:在视频监控业务中,错看漏看、来不及看等是常见的困扰点。大数据监控图像的回溯给许多安防监控管理人员带来了生理与心理的双重挑战。在大量人力投入的公安案件追溯中,都常常耳闻“看到吐”、“看到晕”等无奈和感叹。可想而知一般零售行业、金融行业等,对于视频监控图像的回溯就更为困难。在视频监控大数据趋势已经来临之际,依靠人眼去检索、查看所有视频图像数据已经不太现实。通过大数据技术实现视频图像模糊查询、快速检索、精准定位,让看变得简单迫在眉睫。


  “善用”:视频监控业务中,看只是信息采集的方式之一,用才是业务应用的根本。视频监控业务的效率问题已经成为阻碍产业发展的关键瓶颈。随着视频监控摄像机覆盖广度、密度增大,视频图像数据量呈指数级上升,而视频监控数据的使用效率却在下降。智能交通应用、消费者行为分析应用等综合视频监控和图像智能分析的业务出现,正努力突破视频监控效率值及商业价值低下的瓶颈。通过大数据技术,进一步挖掘海量视频监控数据背后的价值信息,快速反馈内涵知识辅助决策判断是将视频监控用好、用善的金钥匙。


  面向大数据的视频监控体系架构


  视频监控业务的核心就是数据,数据就是业务本身,那么基于大数据架构,可以给中大型的视频监控项目带来诸多的裨益。


  第一,架构更加灵活,伸缩弹性更大。对于一些中大型项目,由于起点的差异,缺乏视频监控架构的顶层设计,后期的扩容升级难免尾大不掉,如在建设初期就引入面向大数据的架构,为业务扩张和管理带来好处。 第二,以廉价通用硬件迎合视频监控数据的爆发性增长。 在面向大数据的架构中,可根据视频监控业务的部署需要,设立多个HDFS集群组成,采集的流数据会被划分成段,并分布于数据节点,这些数据节点可以采用廉价通用型的硬件,由软件技术保证其高可靠性,这种方式避免采用传统高端硬件的模式,大大降低投资成本。 第三,通过高速并行计算实现智能分析和数据挖掘。对于金矿来讲,唯有熠熠发光的金子才是有价值,视频监控数据就犹如这样一座金矿,传统人工和串行的数据筛选方式已在大数据时代不能满足要求。面向大数据的架构原理就是将海量数据分解为较小的更易访问的批量数据,在多台服务器上并行分析处理,从而大大加快视频数据的处理进程。


  结合视频监控业务特点,引入Hadoop的架构,以顶层设计的视角来构建面向大数据视频监控架构,将对未来视频监控业务的规划设计产生深远的影响。下面简明扼要描述下面向大数据视频监控逻辑架构。


  数据源层,包括实时数据和非实时数据。实时数据指IP摄像头和传感器产生的实时流媒体数据。非实时数据指从DVR、编码器、第三方系统导入的媒体数据。


  大数据存储层,采用了HDFS和HBASE,实现数据低成本、高可靠的管理。把采集的流视频保存在HDFS集群内,并通过HBase建立访问的索引。把传统NVR和专用存储进行重构,纳入到整体的分布式文件系统中来。


  大数据计算层,实现智能分析和数据挖掘。通过MapReduce把对大视频的分析进行分解,充分利用闲置资源,把计算任务交由多台服务器进行并行计算分析,另外一方面,根据智能分析产生的视频元数据,通过Hive挖掘视频元数据的价值信息。


  业务及管理层,实现设备和业务管理。基于Zookeeper组成的服务器集群,可以保证业务系统的无故障运营,基于Ganglia实现对摄像头等设备的监管。


  基于大数据的视频架构,本质上是把视频数据作为最有价值的资产,以数据作为核心来构建的技术架构,重点解决了海量的视频数据分散和集中式存储并存、多级分布问题,极大提升了非结构化视频数据读写的效率,为视频监控的快速检索、智能分析提供了端到端的解决方案。


  大数据视频监控构架带来的价值


  大数据视频架构是革命性的技术,特别在实时智能分析和数据挖掘方面,让视频监控从人工抽检,进步到高效事前预警、事后分析,实现智能化的信息分析、预测,为视频监控领域业务带来深刻的变革:


  平安城市领域,实时汇总并综合分析各种公共安全数据和资料,为执法人员快速准确应对提供科学依据:如实时调阅现场视频录像、犯罪嫌疑人记录、同一地区的相似案件资料;进行地理、时间和空间的比较分析,揭示其犯罪模式和行为模式;追踪嫌疑人与其车辆的位置等。指挥人员也可以参照各种数据对不同来源的资料进行综合分析,制作指挥图。


  智能交通行业,可以轻松监控摄像覆盖范围内的所有车辆的行驶状态、运行轨迹,快速分析出其是否违章,通过对海量交通数据的比对、分析和研判,实现指定车辆行驶路径、道路拥堵研判等功能。


  云服务领域:实现基于大数据的视频监控云服务,让摄像机仅通过互连网就能连接云端的视频监控托管服务,通过快速、智能的分析部署在云端的大数据,为小型企业、零售商店、餐馆酒店等提供实时监控视频和潜在风险管理,甚至能提供收费的基于视频内容的分析报告,如日常的客户数,平均队列长度等,创造新的商业模式。


  华为视频监控业务在大数据领域积淀


  华为技术有限公司作为世界500强企业,一直以实力和创新能力闻名于世。华为结合业界主流架构Hadoop,创建了属于华为自己的大数据平台解决方案,不仅有用于存储的分布式文件系统,而且是可以在由通用计算设备组成的大型集群上执行分布式应用的框架,已经融入到华为视频监控的体系结构中。华为大数据视频监控系统具有超大规模容量、跨域资源管理、灵活调度、高性价比海量存储、端到端安全、精细化运维等优点,有效支撑平安城市、智能交通等运营及应用。


  华为Hadoop开源组织的影响力


  在Yahoo和Cloudera发布的数据中,华为公司在Hadoop重要贡献公司名单内,排在IBM和Cisco之前。从2011年截至到现在,华为贡献到开源社区的问题合计626个,报告问题685个,在Hadoop核心和外围全面、持续积累。


  按照业界的公开排名,华为Hadoop团队在全球综合排名第七,在HBase和HDFS社区中拥有2名Committer。华为Hadoop团队的贡献是均衡的,同时在Hadoop内核和周边项目都有贡献。而在HBase和HDFS社区中的2名Committer可以在第一时间为华为带来大数据管理及应用领域前沿技术。


  华为大数据视频监控架构的实践


  X国刚经过战争洗礼,社会秩序正在重建,治安面临严峻的形势。经过多轮的客户需求的分析和挖掘,华为向客户提供了基于大数据架构的视频监控解决方案,赢得客户的信赖,并超越客户的期望。


  首先,针对客户希望通过多个阶段实现由点及面再网的分步建设需求。华为提出基于分布式文件系统的节点架构,可以在摄像头动态增加的情况下,扩展服务器,即可达到单点服务能力的提升,同时不影响业务运营;并且针对新建的点,可以很方便和上一级节点构建隶属关系。 其次,统一管理,分布式存储的需求。由于节点与节点之间,无固定网络,节点与节点之间只能靠无线通信,不具备大容量数据交换的条件。华为提供分布式管理的方案,内容存在节点内,把视频的描述信息汇总到中心节点进行管理,根据中心节点的指令对内容进行管理。 第三,全网智能联动。 当治安事件发生后,通过关键信息,能快速搜寻全网2万多个摄像头记录的信息,传统意义上的智能检索方式已经不能胜任,华为提出并行计算的概念,充分利用各节点闲置计算能力,快速高效实现检索。


  总结


  “这是最好的时代,也是最坏的时代”——狄更斯 《双城记》。


  视频监控进入网络化时代以后,越来越多融入IT新兴技术,大数据技术在视频监控领域的广阔发展路径已经显现,华为正致力于把大数据技术和视频监控业务的完美融合,打造大数据时代的视频监控解决方案。



  新闻稿件欢迎直接联系:QQ 34004818 微信公众号:cpsjyzb

我要评论

表情 验证码 评论

0 条评论

  • 还没有人评论过,赶快抢沙发吧!